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An Analysis of Combined Longitudinal and

Torsional Plastic Waves in a Thin-Walled Tube 1

by

R. J. Clifton2

Abstract. This paper presents a one-dimenslonal rate independent

theory of combined longitudinal and torsional plastic wave propa-

gation in a thin-walled cylindrical tube. The tube material is

assumed to behave as an isotropic work-hardening, elastic-plastic

solid, for which the stress-strain curve in simple tension is a

smooth curve, concave toward the strain axis. The resulting

equations are shown to yield two wave speeds, cf and cs, which

satisfy the inequalities c2 _< cf _ c and c 5 c2 where c2 is the

elastic shear wave velocity and c is the elastic bar velocity.

The solution is given for combined longitudinal and torsional

step loading of:a semi-infinite tube, which is initially at rest

and either unstressed or statically pre-stressed to arbitrary

values of normal stress and shear stress. The solution consists

of adjoining centered simple wave solutions and constant state

solutions. There are two types of simple wave solutions corres-

ponding to the two wave speeds cf and c s. The stress paths in

stress-space associated with these two types of simple waves

form an orthogonal network.

1 This research was partly supported by the Department of Defense
Advanced Research Projects Agency, Order No. 71, through Contract
DA-19-020-AMC-0077(R) with Ballistic Research Laboratories,,
Aberdeen Proving Ground, Maryland. Partial support was also pro-
vided by the Advanced Research Projects Agency under Contract .SD-86.
2 Assistant Professor of Engineering (Research), Brown University,
Providence, Rhode Island.



Introduction

A test involving combined dynamic stress states which is attractive from

the point of view of analysis and which would not seem to present unsurmountable

experimental difficulties is that of combined longitudinal and torsional impact

of a thin-walled cylindrical tube. Such a test, for stress states beyond the

elastic limit of the material, could be expected to provide useful information

regarding the dynamic plastic behavior of solids under combined stress states.

Clearly this information is of fundamental importance in the development of a

three-dimensional theory of plastic wave propagation. In order to interpret the

results of plastic wave tests, designed to study the dynamic mechanical behavior

of a material, it is necessary to first solve the associated boundary value pro-

blem for an assumed material behavior; the appropriateness of the assumptions

regarding the material behavior is then evaluated by comparison of theory and ex-

periment. Accordingly, the purpose of this paper is to present an analysis of

combined longitudinal and torsional impact of a thin-walled cylindrical tube,

based on an assumed material behavior which, although simple, could be expected to

result in a useful theory for interpreting experimental observations. It will be

assumed that the stress-strain curve for simple tension is smooth, concave toward

the strain axis, and independent of the rate of strain; that the material satisfies

either the Tresca or von Mises yield conditions; that isotropic work-hardening

applies; that the elastic and plastic strain rates are separable and that the

plastic strain rate is given by the theory of the plastic potential. In other

words, the theory is the same as the usual quasi-static, elastic-plastic theory

for isotropic work-hardening (see e.g. El]) except that the inertia terms are

included.

The theory presented here reduces to that of von Kgrman [2] for the case

of longitudinal impact, without torsion. It is similar to the theory presented
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by Bleich and Nelson [3] for the case of a uniformly distributed step load of

pressure and shear on a half space, except that Bleich and Nelson assumed the

material to be elastic-perfectly plastic. Rakhmatulin [.*4] and Cristescu [5] have

used a deformation theory of plasticity to study elastic-plastic wave propagation

for combined stress states analogous to the stress states considered here. They

considered the case of edge impact of two plates for which the directions of the

velocities of the two plates are in the plane of the plates and are oblique to

the impacting faces; for their case the normal strain in the direction parallel

to the impacting faces and in the plane of the plates is zero whereas in the case

considered here the normal stress in the corresponding direction is assumed to

be zero, Rakhmatulin described a solution in which first a uniaxial stress state

propagates into the body as a simple wave followed by a constant state; then a

combined stress state propagates as a wave of strong discontinuity followed by a

constant state. Cristescu, using the same equations as Rakhmatulin and assuming

a material for which the slope of the stress-strain curve in shear is less than

the secant modulus, found two types of combined stress waves. He showed that a

given level of compressive strain propagates faster in the faster of these two

combined stress waves than it would in a plastic wave for a uniaxial stress state;

similarly, in the slower combined stress wave the velocity of propagation of a

given level of shear strain was shown to be faster than in a plastic wave of pure

shear. From these results Cristescu concluded that combined dynamic stress is

transmitted in a body only by combined stress waves. In contrast with the results

of Rakhmatulin and Criptescu, the present theory prpdicts that a wave of strong

discontinuity occurs only in elastic regions and that a leading uniaxial plastic

wave exists fora step load of normal stress and shear. A bibliography of studies

of one-dimensional plastic waves involving combined stress states is given in a

survey paper by Cristescu [6].



3

1. Derivation of the Basic Equations

Consider a long slender thin-walled tube with mean radius r as shown in

Fig. 1. Let U(x,t) denote the average displiacement in the longitudinal direction

at time t of the cross-section at a distance x from the impact end'of the tube.

Since this is to be a small deformation theory, the coordinate x. can refer to

either the initial position of the cross-section or its, position at time t. Let

£(x,t) denote the longitudinalstrainU x, (subscripts x and t denote partial

differentiation with respect to x and t respectively) and u(x,t) the longitudinal

particle velocity'U t Then if U is twice continuously differentiable

et u ()

Analogously, let Q(x,t) denote the average rotation about the x-axis at time t

of the cross-section at x. Let y(x,t) denote the shearing strain rO x and v(x,t)

the tangential velocity r~t. Then, neglecting changes in r, we have

.Yt = v (2)

Conservation of linear momentum gives

ax = Pu (3)
x

where a(x,t) is the force in the longitudinal direction per unit cross-sectional

area and p is the density. Conservation of angular momentum gives, again neglecting

changes in r,

T x Pyt (4)

where T(x,t).is the force in the tangential direction per unit cross-sectional area.

The strain rates e and y are assumed to be the sum of an elastic part

and a plastic part.
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Thus,

et C e + E (5a)
.t t t

eY + Y (5b)

where the superscripts e and p denote the elastic and plastic parts respectively.

In formulating the stress-strain relations it will be assumed that a and T are

the only non-zero stresses; in particular, the hoop stress associated with the

lateral inertia of the tube will be neglected. For an isotropic elastic solid

the elastic parts in Eqs. (5) are given by

e 1
Et a0 t (6a)

e 1
Yt = Tt (6b)

where E is Young's modulus and p is the modulus of rigidity.

The plastic strain rates are given by

ep = af (7a)

y P = (7b)
t T

where f(o,T) is the yield function and A is a positive scalar function to be

specified subsequently. The yield condition is assumed to have the form

a 2

f(C,T) (•) + T = k2  (8)

where e is a constant, and k is the yield stress in pure shear. For 0 = F Eq. (8)

corresponds to the von Mises (distortion energy) yield condition and for 0 = 2

Eq. (8) corresponds to the Tresca (maximum shear stress) yield condition. If

isotropic work-hardening is assumed then there is a one to one correspondence

between k and the plastic work Wp. The plastic work rate Wj is given by
t,
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-p aJp + T (9)
t t t

From Eqs. (7), (8), and (9) and the relation W the function is found

to satisfy

-kt dwP 
(10)

2k
2 dk

The function WP(k) can be determined from the stress-strain curve for a

simple tension test or a pure shear test. For this, let a = f(e) be the stress-

strain curve in simple tension. An increment in stress do is related to the

elastic strain increment de e and the plastic strain increment dep by

e

do = f (E)[dse + dep] (11)

Substituting dEe = da/E and dep = dWP/a in Eq. (11) and regarding the slope of the

stress-strain curve (i.e. f (e)) as a function of the stress a, say g(a),.we

obtain

da = d+ dW+ a (12)E a

For simple tension the yield condition, Eq. (8), reduces too = Ok. Using the

latter relation in Eq. (12) we obtain the following first order differential

equation for the function WP(k).

dWp i i
d- = 0 2 k ( 1) (13)
dk g(k) E

Eq. (13) and the initial condition WP( y/8) = 0, where ay is the initial yield

stress in tension, determine the function WP(k) corresponding to the stress-strain

curve a = f(e).

The governing equations are obtained by using Eqs. (5), (6), (7), (8), and

(10) to express e t and yt in Eqs. (1) and (2) in terms of a, T, at and Tt. Thus,
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Eqs. (1) and.(2) become

1 o2
1t + H(k)[(.) a + a t] T U (14)

Et0 t t x

Tt + H(k)[GT at + 2 T2 Tt] = V (15)

respectively, where

dWp

H(k) - dk (16)
02k3

If Eq. (8) is used to express k in Eq. (16) in terms of a and T then Eqs. (3),

(4), (14), and (15) constitute a system of four first order partial differential

equations for the four unknown functions a, T, u and v.

2. Characteristic Properties of the Equations

The governing system of first order partial differential equations derived

in the previous section can be written in the following matrix form

L[w] Awt + Bwx 0 (17)

where w is the vector

and A and B are the following symmetric matrices.

p 0 00 0 0

0 1+ H( ) 0 HOT
A 0_ B= -1 0 0

01 0 p 0 0 0 -

0 HOT 0 ±+ He2T2 0 0 -
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The system of equations, Eqs. (17), is a system of quasi-linear, symmetric hyper-

bolic, partial differential equations of first order. (The theory of such equations

is given, for example, in Chapter 5 of Ref. [7]). The characteristic velocities c

for Eqs. (17) are the roots of the characteristic equation det. C=0 where C = (cA-B)

is the characteristic matrix. The characteristic equation is

2
L(pc 2 ) - (M+N)(pc 2 ) + 1 0 (18)

where

i • )2IHO2T2
L + 1 H(cy/O + •H'T

11
M = - +H22

N )2
N 1 + H(a/)2

The roots of Eq. (18) are

1/2

Pc 2 = M +.N ± [(M-N) 2 + 4H2 T2 02 ]• (19)
2L

The wave speed, taking the plus sign in.Eq. (19), will be denoted by cf and,

taking the minus sign, by cs; the subscripts f and s denote 'fast' and 'slow'

wave speeds respectively. For the elastic case (i.e. H=0) cf becomes the elastic

= 1/2bar velocity c0  (E/p) and c becomes the elastic shear wave velocity
1/2o

c 2 = (//20 For the case of longitudinal impact (i.e. T=0) cf corresponds

to the velocity of longitudinal plastic waves for stresses sufficiently small

that cf > c 2 ; otherwise, cs corresponds to the velocity. of longitudinal plastic

waves. For the case of torsional impact (i.e. a=0) cs corresponds to the velocity

of torsional plastic waves.

In order to study the dependence of the wave speeds on the stress state

it is helpful to characterize the stress state (o,T) by the associated value
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of the yield stress k, from Eq. (8), and an angle 4)by use of the relations

T = k sin 4 (20a)

o/O = k cos 4 (20b)

for which the yield condition, Eq. (8), is identically satisfied. Substituting

Eqs. (20) in Eq. (19) we obtain expressions for the wave speeds in terms of k

and 4. These expressions can be simplified by substituting for H, using Eqs. (16)

and (13), and writing the slope of the uniaxial stress-strain curve at a = Ok

(i.e. g(Ok)) as 8E where 0 = O(k) satisfies 0 S 8 : 1 and decreases monotonically

with increasing k. In this way we obtain the following dimensionless form for the

wave speeds as functions of 0 and 4.

1/2
(-)2 = (21)
c2 2L

where

L 1 + (i/!-l)(cos 2 ¢ + 2(l+v) sin2

S= 2(1+v) + (1/ý-l) e2 sin2 4

= 1 + (1/8-1) cos 2 4

= 4(1/0-1)2 02 sin2 4 cos 2 4

and v is Poisson's ratio. The wave speeds cf and cs given by Eq. (21) are plotted

vs. 4 in Fig. 2 for fixed values of 0, v, and 8.

For values of v satisfying 0 5 v : 1/2 and values of 0 satisfying 3 • 02 < 4,

the wave speeds cf and cs satisfy cs 5 c 2 e cf < c0 . Furthermore, for an arbitrary

fixed value of 4, cs and cf decrease monotonically with decreasing.8. Also, for a

fixed value of 8, cs is monotonically decreasing and cf is monotonically increasing

with increasing 4 for 4 in the interval (0, 7r/2).



The characteristic curves, or simply the characteristics,.for Eqs. (17)

are the four families of curves which satisfy

d- cf (22a)

dxx= ± c (22b)dt s

where cf and c are given by Eq. (19). Since the right sides of Eqs. (22) depend

on a and T the characteristics can be constructed only after the solution a(x,t)

and T(x,t) is known.

Associated with the characteristic matrix C, for a characteristic with wave

velocity c, is a null vector k which satisfies

Cz = 0 (23)

There are four linearly independent null vectors corresponding to the four wave

velocities± cf and ± cs. The null vectors for Eqs. (17) which correspond to
5

positive wave velocities are given by

-pc2 HaT
-pc HOTdx

f + f for -+c(4a
Cf+ + H(a/1)2) d-t +cf (24a)

Pcf fE•
21

Pcf (2 + H(a/e) 2 ) - 1
f E

1 c1

pcs s(+ He2t 2 )

1C +H2T2)

+ pc ( + H ) - 1 rdx=for •- = + C (24b)
s dt s

H-c s

-pc2 HaT
s



10

in which there is an arbitrary scalar factor. The null vectors tf and -s

corresponding to negative wave velocities are obtained from Eqs. (24a) and (24b)

respectively by replacing cf by -cf and cs by -cs.

The functions a, r, u, and v are continuous across a characteristic, but

jumps in their derivatives may occur in the direction of the normal to the charac-

teristic, The jump [w ] in the normal derivative of the vector w must satisfy
n

CEw I " 0 so that, in view of Eq. (23), [w I is proportional to the corresponding
n n

null vector k. Since all components of the null vector are non-zero, except for

special cases in which either H = 0, 6 = 0, or T = 0, it follows that in general

both.longitudinal and torsional motion are associated with each wave speed.

The linear combination of Eqs. (17) given by

Z.L[w] 0 (25)

where the dot denotes the Euclidean inner product, is an interior differential

equation on the characteristic associated with the null vector 2(Ref. [7] pp. 424-

427). Substituting Eqs. (24) in Eq. (25) we obtain the following incremental

relations along the characteristics.

[1/pc2 - (l/E + H(o/O) 2 )] [pcf dv - dr] +

Ho[pcf du - do] 0;dx + cf (26a)

[1/pC2 
- (1/u +.He 2 T2 )] [pcs du - do] +

HoT[pc dv - dT] 0; d- + c (26b)

The incremental relations along the characteristics dx c and d - c are
cdt f dt s

obtained by replacing cf by -cf and cs by -cs in Eqs. (26a) and (26b) respectively.

These incremental relations along characteristics are used in the next section to

obtain simple wave solutions. They are also useful in deriving difference equations

for the numerical solution of problems involving arbitrary initial and boundary

conditions [8].
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3. Simple Wave Solutions

There are two types of simple wave solutions of Eqs. (17); namely, slow

dx
simple waves in which the solution is constant along the characteristics - s,

and fast simple waves in which the solution is constant along the characteristics

dx - cf. Characteristics for these two types of simple waves are shown in Fig. 3.

The solution for slow simple waves can be obtained by examining the com-

putation of the solution at point P in Fig. 3(a) for given constant values of

0
0, T, u, and v on the characteristic c . The solution at point P is computed

5
dx

by integration of Eqs. (26) along the characteristics L- = +cf, -c, and - c

0Since a, T, u, and v are constant along c these three incremental relations can

be regarded as three ordinary differential equations. Adding the two equations

for the characteristics + cf and - cf gives the following first order ordinary

differential equation for a as a function of T

da =(o,T) (27)

where

l/E + H(a/6)2  1/pc2

Y(G,T) f (28a)

HaT

or, in view of Eq. (18), equivalently

Hot

T(a,T) = (28b)
1/p + H02 T2 - I/pc2

It is convenient to also have expressions for T involving the wave speed c5 instead

of cf. Thus

1/P + He2T 2 - 1/pc 2

(,T)= -s (28c)
HOT
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or

HoT
-(o,T) (28d)

l/E + H(a/O) 2 - 1/pC 2

S

From Eq. (28b), T vanishes on the T-axis, on the initial yield surface, and on the

a-axis in the interval ay < lJl < a where a is the stress for which the slope of

the uniaxial stress-strain curve is equal to 1j. From Eq. (28a), T is infinite at

points on the a-axis for which IJu > a. Except at these points, the function

T(a,T) is continuous and continuously differentiable., Thus, a unique solution

of Eq. (27) passes through any point (at), except the points where T is infinite.

This solution will be denoted by a = a(T; (0,T)). The solution through a point

(GT) with a $ 0 cannot intersect the T-axis because a = 0 is a unique solution of

Eq. (27). Likewise, the solution through a point (;,i) with T_ $ 0 cannot inter-

sect the a-axis at values of a satisfying Jul > a because, at such points, T 0

is a unique solution of the differential equation dr/do = l/T(U,T). Therefore,

the solution of Eq. (27) through an arbitrary point (;,T) must either intersect

the initial yield surface or intersect the a-axis in the interval ay Y :aj J .

Solutions of Eq. (27), obtained by numerical integration, are shown as solid

lines in Fig. 4. For-these curves a stress-strain curve representing that of

annealed commercially pure aluminum was used. The von Mises yield condition

(i.e. O = /3) was used.

In Fig. 4 there are three types of curves: (a) curves that pass through

the point a a, T = 0; (b) curves that intersect the a-axis in the interval

a < JIu < a; (c) curves that intersect the initial yield surface. Each of the

curves, or stress paths, represents a locus of stress states that occur at a

section during the passage of a slow simple wave. These stress paths are tra-

versed in the directions indicated by the arrows in Fig. 4. The slopes of the

curves in Fig. 4 satisfy the inequality

0 <da<a (29)
d 2 2
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and approach the upper limit as the radius of the subsequent yield surface,

,[(a/6) 2 + T21/2, becomes infinite.

The solution for stresses as functions of x and t for a slow simple wave,

centered at the origin, is determined implicitly by the relations

a a(t; (aT)) (30a)

Cs(a,T) = (30b)

where a = a(T; (;,T)) is the stress path for the slow simple wave, and the function-

c (0,T) is given by Eq. (19). In order for this slow simple wave solution to be
s

valid, however, the wave velocity c must decrease monotonically as the stressess

a and T increase along the curve a = a(T; (a,T)). To show that this is the case

it is convenient to regard c as a function of 8 and ý as in Eq. (21). Thens

dc 3c 3s D s da dk + s de (31)
d¶ 3 dk dT d-

ac ac
Recall that -- is positive and -- is negative (see Fig. 2). From the condition

that the stress-strain curve is concave downward da/dk is negative. The result

that do/dT satisfies inequality (29) insures that dk/dT and dc/dT are positive.

Consequently, dc s/dT is negative and the simple wave solution is valid.

The slow simple wave solution is completed by determining the velocities

u and v associated with each point on the stress path a = a(T; (oT)). For this,

use is made of the two ordinary differential equations which, in addition to

Eq. (27), result from integrating Eqs. (26) along the characteristics - + c,
dt

- cf, and - cs in Fig. (3a). These two equations can be written as

dv- 1 (32a)
dT pcs

du 1
pc (32b)
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Since the right side of Eqs. (32) is a known function of a and T the change in

u and v as the stress state varies along the path a = a(T; (6,T)) can be obtained

by quadrature.

The change in strain with the passage of a slow simple wave can be obtained

by integration of the strain rates, Eqs. (l4) and (15), with respect to time,

along the path a aC(r; (at)). Making use of Eqs. (27) and (28), we can write

the equations governing the change in strain in the following form

de 1 (33a)
do PC2

S

dy _1 (33b)
dr 'C2

s

from which the strains can be obtained by quadrature. An interesting consequence

of Eqs. (33) is that in slow simple wave regions

do (34)
dy

That is, the direction of the total strain-rate vector coincides with that of the

stress-rate vector.

The solution for fast simple waves is obtained in the same way as was the

solution for slow simple waves. Integration along the three characteristics in

Fig. 3b yields the following differential equation for the stress path for fast

simple waves

d- - 1 (35)

where (O(,T) is the same as in Eq. (28). Comparison of Eqs. (35) and (27) reveals

that the stress paths for fast simple waves are orthogonal to the stress paths

for slow simple waves. The former are shown as dashed lines in Fig. 4. As these
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stress paths are traversed from left to right the wave speed cf decreases mono-

tonically from c0 to c 2 . The equations determining the changes in velocities for

fast simple waves, analogous to Eqs. (32), are

du = I (36a)
do Pcf

dv 1
dT pCf (36b)

The equations for computing the changes in strains are

d 1 (37a)
do 2c

cf

dy = 1 (37b)
:dT pc2

Pf

From Eqs. (37), the directions of the total strain-rate vector and the stress-rate

vector also coincide for fast simple waves.

4. Solution for Step-Loading of a Semi-Infinite Tube

Solutions for a variety of step-loading problems for a semi-infinite tube

can be obtained by appropriate combinations of slow and fast simple wave solu-

tions, constant state solutions, and waves of strong discontinuity (i.e. waves

across which jumps in stress and velocity occur). Jumps in a and u can occur only

across a wave front with speed c ; jumps in T and v can occur only across a wave

front with speed c 2 . From conservation of momentum these jumps must satisfy

dx(3a
[a] = - PCo[u] for c- (38a)

dt o

[T] = - PC 2 [VI for d- c 2  (38b)
2 dt
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where square brackets denote the jump in the enclosed quantity.

As an example, we consider the case of a tube initially at rest and unstressed

which, at the end x = 0, is simultaneously subjected to a constant normal stress

a0 and a constant shear stress T . That is, we seek a solution of Eqs. (17) in

the region 0 5 x s -, 0 < t < which satisfies the initial conditions

u(x,0) = G(x,0) = v(x,0) = T(xO) = 0 (39)

and the boundary conditions

a(0,t) = 0 0 < t < O (40a)

T(0,t) = t 0 < t < C (40b)

in which 0 and T are constants satisfying

(ao/e)2 + t 2 '> (aY/0) 2  
(41)

where a is the initial yield stress in simple tension.

For this problem there are three types of wave solutions as shown in Figs.

5(a), 5(b), and 5(c); which type results in a given case depends on the values

of a0 and To. Figs. 5(a), 5(b), and 5(c) correspond to the cases when a and To

are such that the point (ao0 ,T ) in Fig. 4 is intersected by solutions of Eq. (27)

of types (a), (b), and (c), respectively. Double parallel lines in Fig. 5 repre-

sent wave fronts across which jumps in stress and velocity occur. For case (a)

the stress wave behavior is as follows: a jumps to ay across the wave front pro-

pagating with a speed c0 ; a increases across the fast simple wave region to a,

according to the von Kdrman solution, while T remains zero; a and T increase

across the slow simple wave region, following stress path (a) in Fig. 4, until

the stress state a = 0 , T = T is reached; a and T are constant in the constant
s o

state region. Case (b) differs from case (a) only in that the fast simple wave
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solution terminates when the stress a reaches the stress, say ab, at which the stress

path (b) in Fig. 4 intersects the a-axis. A constant state region with a = ab,

and T = 0 separates the fast and slow simple waves in Fig. 5(b). In case (c) a

jumps to a (see Fig. 4) across the wave front x.= c t; T jumps from 0 to T acrossC 0 C

the wave front x = c2 t; a and T increase across the slow simple wave region,

following stress path (c0, to the stress state a = a, T = The particle
00

velocities u and v for these three ciuses can be obtained from the solution for

stresses by use of Eqs. (32), (36), and (38).

As a second example we consider a case which differs from the first example

only in that the tube is initially stressed statically* by a shear stress t which

exceeds the initial proportional limit of the material. In this example the final

shear stress will again be denoted by T so the jump in shear stress at t = 0 is0

T - Ts. The solution for this case can be read from Figs. 6(a) and 6(b); a in-

creases and T decreases across the fast simple wave region, following the stress

path ab, to the stress state a = a1, t = T1; there.is a constant state region with

G = a1 , T = T for cS(aTI) < x < c (0I1T a and T follow the stress path bc

as they increase across the slow simple wave, region to the final stress state

(a 5

This second example exhibits the unexpected result that the shear stress

at any cross-section would first decrease due to the passage of a fast simple wave.

It should be possible to carry out experiments that would either verify or refute

such a prediction.

A case for which the solution exhibits an even more unexpected behavior is

the case where the tube is initially stressed by a tensile stress s and then

subjected to step-loading such that the final stress state (aoT ) lies outside

the yield surface through the point (as,0). That is, a and T, satisfy
( 0 0

(a /6)2 + T2 > (aCF/0) 2 (42)



18

The solution for this case is shown in Fig. 7. Unloading occurs at the wave

front x = cot where the normal stress falls to a T jumps to T across the wave

front x = c2 t; a and T follow the stress path cd as they increase across the slow

simple wave region to the final stress state (aO,T). In this case the magnitude

of the jumps at the two wave fronts clearly depends strongly on the assumption

that the subsequent yield surface for tension followed by torsion can be located

by the theory of isotropic work-hardening. However, in static tests the subsequent

yield surface ordinarily agrees better with the assumption that the yield surface

translates in the direction of the initial tensile stress than it does with the

assumption of isotropic work-hardening [9]. Therefore, the theoretical predictions

in this case probably do not agree well with what would be observed experimentally.

So far solutions have been given for step-loading of tubes subjected to

either an initial shear stress T = T or an initial normal stress a = a. The

solution for the case of an arbitrary initial stress state a = o T T. can

clearly be obtained, without difficulty, using the techniques already established

here.

The solutions given here are also valid for the case of combined longitu-

dinal and torsional impact in which the velocities, instead of the stresses, are

prescribed at x = 0. For given values of prescribed velocities (U ,V ) the cor-

responding stresses at the impaetaface (& ,Oi) can be obtained by interpolation
090

from a'network of contours of constant values of u0 and v as shown in Fig. 8. In

Fig. 8 a contour u0 = constant represents the locus of applied stresses (aoTo)

for which the longitudinal velocity at the impact end is u 0 . The contours v 0 con-

stant have an analogous interpretation. These contours are obtained by first

determining several stress paths for slow simple waves as shown in Fig. 4 and then

computing the particle velocities along these paths by numerical integration of

Eqs. (32). The contours are then plotted by connecting points on the various stress

paths for which the velocities are the same,
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